Trichloro-(π-cis-pent-3-enylammonium)platinum(II)

By P. Mura, R. Spagna, G. Ughetto and L. Zambonelli
Laboratorio di Strutturistica Chimica 'Giordano Giacomello', C.N.R. Area della Ricerca di Roma, Casella Postale 10, 00016 Monterotondo Stazione (Roma), Italy

(Received 17 March 1976; accepted 10 April 1976)

Abstract

PtCl}_{3}\left(\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}\right)\), monoclinic, $P 2_{1} / c, a=8.521$ (5), $b=7.569$ (8), $c=15.073$ (16) $\AA, \beta=102 \cdot 45$ (7) ${ }^{\circ}$, $D_{m}=2.71$ (1), $Z=4, D_{c}=2.702 \mathrm{~g} \mathrm{~cm}^{-3}$. The zwitterionic complex was prepared by method (1) of Denning \& Venanzi [J. Chem. Soc. (1963), pp. 3241-3247]. The ligand cis-pent-3-enylammine hydrochloride was prepared from 1-chloro-3-pentyne by the Gabriel phthalimide method [Sheenan \& Bolhofer, J. Amer. Chem. Soc. (1950), 72, 2786-2788] through the Lindlar hydrogenation of 3-pentyne-1-phthalimide.

Introduction. Cell parameters were determined by a least-squares refinement of the setting angles of 15 reflexions centred on a Syntex $P 2_{1}$ automatic diffractometer with Mo $K \alpha$ radiation monochromatized by a graphite crystal. Systematic absences were $h 0 l$ with l odd and $0 k 0$ with k odd. The intensities were obtained from a crystal ($0.15 \times 0.15 \times 0.24 \mathrm{~mm}$) mounted on the diffractometer (Mo K α monochromatized, $\theta-2 \theta$ scan). 3611 independent reflexions were measured up to $2 \theta=60^{\circ} ; 2554$ of these, with $F_{o}>3 \sigma\left(F_{o}\right)$, were used for the analysis. A correction for the shape anisotropy [$\mu(\mathrm{Mo} K \alpha)=162.5 \mathrm{~cm}^{-1}$] was applied (Furnas, 1975; North, Phillips \& Matthews, 1968) with a procedure similar to that previously described (Spagna \& Zambonelli, 1971). For this correction the variation in intensity of the conveniently intense reflexions (320, 632, 732 and 842) with χ angles near to 90 or 270° was measured as a function of φ. Lorentz and polarization corrections were applied. The structure was solved by Patterson and Fourier methods. The full-matrix leastsquares refinement converged at $R=0.065$ and $R=$
0.045 with isotropic and anisotropic temperature factors respectively. At this stage H atoms were positioned geometrically and included in the structure-factor calculations, being readjusted after each cycle. The final R is $0.044\left(R_{w}=0.044\right)$. The function minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ with weights $u=4 F_{o}^{2} / \sigma\left(F_{o}^{2}\right)$.

Atomic form factors given by Cromer \& Mann (1968) for Pt, Cl, N and C, and by Hanson, Herman, Lea \& Skillman (1964) for H were used. The effects of anomalous dispersion were included: the values of Δf^{\prime} and $\Delta f^{\prime \prime}$ for Pt and Cl were those computed by Cromer (1965). In Table 1 the positional and thermal parameters for the non-hydrogen atoms are reported; the idealized positions of the H atoms are given in Table 2. Bond lengths and angles are given in Table 3.*

Discussion. Fig. 1 shows a perspective view of the molecule of the zwitterionic platinum-olefin complex. Pt is four-coordinated, in a square-planar configuration, by the three Cl atoms and the olefinic double bond of the pentenylammonium cation. The best plane $(-4 \cdot 900 x+5 \cdot 880 y+5 \cdot 648 z-1 \cdot 433=0$, in terms of monoclinic coordinates) was calculated through the Pt and the Cl atoms. The midpoint of the olefinic double bond is $0 \cdot 30 \AA$ out of this principal plane, and the double bond makes an angle of $81 \cdot 9^{\circ}$ with it. The

[^0]Table 1. Positional and thermal parameters $\left(\times 10^{4}\right)$ for the non-hydrogen atoms
Estimated standard deviations are given in parentheses. Coefficients $b_{i j}$ are defined by the expression

$$
T=\exp \left[-\left(b_{11} h^{2}+b_{22} k^{2}+b_{33} l^{2}+b_{12} h k+b_{13} h l+b_{23} k l\right)\right] .
$$

	x	y	z	b_{11}	b_{12}	b_{13}	b_{22}	b_{23}	b_{33}
Pt	2049 (0)	2246 (0)	1897 (0)	60 (0)	10 (1)	16 (0)	48 (1)	-2 (1)	19 (0)
$\mathrm{Cl}(1)$	-379 (3)	999 (3)	1208 (2)	89 (3)	-54 (6)	21 (3)	105 (4)	-33(4)	34 (1)
$\mathrm{Cl}(2)$	1844 (3)	848 (3)	3253 (2)	112 (4)	15 (7)	35 (3)	105 (4)	21 (3)	25 (1)
$\mathrm{Cl}(3)$	4378 (3)	3575 (3)	2654 (2)	65 (3)	1 (6)	-6 (3)	101 (4)	2 (3)	35 (1)
N	2006 (10)	7038 (11)	2143 (5)	86 (11)	12 (22)	43 (11)	92 (16)	-9 (12)	33 (4)
C(1)	1935 (11)	7216 (13)	1144 (6)	82 (13)	23 (26)	24 (12)	81 (15)	17 (14)	30 (4)
C(2)	2751 (11)	5709 (12)	769 (6)	79 (13)	8 (23)	31 (12)	67 (16)	5 (13)	29 (4)
C(3)	1881 (10)	3970 (12)	727 (6)	64 (12)	6 (22)	18 (11)	73 (16)	11 (12)	21 (4)
C(4)	2604 (14)	2385 (13)	550 (6)	196 (22)	-10 (32)	57 (15)	70 (18)	9 (13)	22 (4)
C(5)	4341 (15)	2152 (16)	509 (8)	154 (19)	70 (36)	86 (16)	138 (22)	15 (19)	39 (5)

Fig. 1. Trichloro-(π-cis-pent-3-enylammonium)platinum(II). A perspective view of the molecule.

Table 2. Idealized coordinates $\left(\times 10^{3}\right)$ for the hydrogen atoms
The isotropic temperature factor was $3.0 \AA^{2}$ for all the hydrogens.

	x	y	z
$\mathrm{H}(1) \mathrm{N}$	145	807	236
$\mathrm{H}(2) \mathrm{N}$	315	701	248
$\mathrm{H}(3) \mathrm{N}$	146	592	226
$\mathrm{H}(4) \mathrm{C}(1)$	247	835	104
$\mathrm{H}(5) \mathrm{C}(1)$	78	725	82
$\mathrm{H}(6) \mathrm{C}(2)$	385	556	116
$\mathrm{H}(7) \mathrm{C}(2)$	285	603	14
$\mathrm{H}(8) \mathrm{C}(3)$	76	395	83
$\mathrm{H}(9) \mathrm{C}(4)$	190	131	44
$\mathrm{H}(10) \mathrm{C}(5)$	454	89	37
$\mathrm{H}(1) \mathrm{C}(5)$	504	248	111
$\mathrm{H}(12) \mathrm{C}(5)$	460	293	2

Table 3. Bond lengths and angles in trichloro-(cis-pent-3-enylammonium)platinum(II)
Estimated standard deviations are given in parentheses. MP defines the midpoint of the olefinic double bond.

$\mathrm{Pt}-\mathrm{Cl}(1)$	$2 \cdot 307(2) \AA$	$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{Cl}(2)$	$88 \cdot 8(1)^{\circ}$
$\mathrm{Pt}-\mathrm{Cl}(2)$	$2 \cdot 341(2)$	$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{Cl}(3)$	$176 \cdot 1(1)$
$\mathrm{Pt}-\mathrm{Cl}(3)$	$2 \cdot 297(2)$	$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{MP}$	$88 \cdot 2$
$\mathrm{Pt}-\mathrm{MP}$	$2 \cdot 063$	$\mathrm{Cl}(2)-\mathrm{Pt}-\mathrm{Cl}(3)$	$89 \cdot 0(1)$
$\mathrm{Pt}-\mathrm{C}(3)$	$2 \cdot 173(9)$	$\mathrm{Cl}(2)-\mathrm{Pt}-\mathrm{MP}$	$173 \cdot 1$
$\mathrm{Pt}-\mathrm{C}(4)$	$2 \cdot 185(11)$	$\mathrm{Cl}(3)-\mathrm{Pt}-\mathrm{MP}$	$94 \cdot 3$
$\mathrm{~N}-\mathrm{C}(1)$	$1 \cdot 500(13)$	$\mathrm{C}(3)-\mathrm{Pt}-\mathrm{C}(4)$	$37 \cdot 5(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1 \cdot 508(14)$	$\mathrm{N}--\mathrm{C}(1)-\mathrm{C}(2)$	$112 \cdot 7(8)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1 \cdot 505(13)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$114 \cdot 5(8)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1 \cdot 400(14)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$121 \cdot 6(9)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1 \cdot 504(18)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$125 \cdot 8(10)$

plane through Pt, $C(3)$ and $C(4)$ makes an angle of 85.4° with the principal plane.

The $\mathrm{Pt}-\mathrm{Cl}$ bond trans to the coordinated olefinic double bond is significantly longer (20σ) than those in the cis positions, which are almost equivalent. In the present case the trans bond-lengthening is rather pronounced.

The cis-pentenylammonium cation, coordinated through its double bond to the Pt , has lost its pure cis
configuration; in Table 4 the internal rotation angles of the ligand are reported (Klyne \& Prelog, 1960). The optically active complex (Paiaro \& Panuzzi, 1964) is present in the crystal in the racemic form, the $\mathrm{C}(3) R: \mathrm{C}(4) S$ and $\mathrm{C}(3) S: \mathrm{C}(4) R$ configurations (Cahn, Ingold \& Prelog, 1956) being related by the glide plane; Fig. 1 and the coordinates in the tables refer to the molecule with $\mathrm{C}(3) S: \mathrm{C}(4) R$ configuration.

Table 4. Internal rotation angles of the cis-pent-3-enylammonium cation coordinated to the platinum(II)
The convention of Klyne \& Prelog (1960) is adopted. Estimated standard deviations are given in parentheses.

$$
\begin{array}{lr}
\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3) & 70 \cdot 3(9)^{\circ} \\
\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4) & -168.6(8) \\
\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5) & 8.9(14)
\end{array}
$$

Probably the H atoms of the $-\mathrm{NH}_{3}^{+}$group take part in a $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen-bond network: short contacts between the N and Cl atoms are observed (Table 5). For the structure of other platinum(II)olefin complexes see Spagna, Ughetto \& Zambonelli (1973) and references quoted therein.

Table 5. Intermolecular contacts between nitrogen and chlorine atoms shorter than the sum of the ionic radii ($3.62 \AA$)

$\mathrm{N} \cdots \mathrm{Cl}\left(1^{\text {i }}\right)$	$3.19 \AA$	$\mathrm{~N} \cdots \mathrm{Cl}(3)$	$3.30 \AA$
$\mathrm{~N} \cdots \mathrm{Cl}\left(2^{2 i}\right)$	3.35	$\mathrm{~N} \cdots \mathrm{Cl}\left(3^{\text {ii }}\right)$	3.25
$\mathrm{~N} \cdots \mathrm{Cl}\left(2^{i}\right)$	3.33		

(i)	$-x$	$\frac{1}{2}+y$	$\frac{1}{2}-z$
(ii)	x	$1+y$	z
(iii)	$1-x$	$\frac{1}{2}+y$	$\frac{1}{2}-z$

References

Cahn, R. S., Ingold, C. K. \& Prelog, V. (1956). Experientia, 12, 81-94.
Cromer, D. T. (1965). Acta Cryst. 18, 17-23.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Denning, R. G. \& Venanzi, L. M. (1963). J. Chem. Soc. pp. 3241-3247.
Furnas, T. C. (1975). Single-Crystal Orienter Instruction Manual. Milwaukee: General Electric Company.
Hanson, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040-1044.

Klyne, W. \& Prelog, V. (1960). Experientia, 16, 521-523.
North, A. C. T., Phillips, D. C. \& Matthews, F. S. (1968). Acta Cryst. A24, 351-359.

Paiaro, G. \& Panuzzi, A. (1964). J. Amer. Chem. Soc. 86, 5148-5152.
Sheenan, J. C. \& Bolhofer, W. A. (1950). J. Amer. Chem. Soc. 72, 2786-2788.
Spagna, R., Ughetto, G. \& Zambonelli, L. (1973). Acta Cryst. B29, 1151-1153.
Spagna, R. \& Zambonelli, L. (1971). J. Chem. Soc. (A), pp. 2544-2549.

[^0]: * A table of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31785 (11 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CHI 1NZ, England.

